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An analytical model of the transient thermal 
behaviour of semiconductor device 

Marija Radmilović-Radjenović, Branislav Radjenović 
 

Abstract— In this paper, an analytical one dimensional  mathematical model of the transient thermal behavior of semiconductor  devices is pre-
sented.  The regions where the heat is dissipated are modeled as δ(x) source located at finite distance beneath the top surface. Three procedures 
including Fourier and Laplace transforms as well as Fourier series, for obtaining an explicit expression for the temperature space-time depend-
ence are described in details. Simple analytical relations for the transient thermal impedance andthermal time constants are derived.  It is shown 
that temperature time dependence can be described with only one parameter – rise time 

rτ . Simple analytical expression of the thermal imped-

ance has the same form as that obtained using the phenomenological model.  
 
Index Terms— thermal, transient, p-n junction, semiconductior, device, MOFSTE, transform.   

——————————      —————————— 

1 INTRODUCTION                                                                     
T  is well known that the thermal system optimization plays 
very important role in electrical optimization. For example, 
with decreasing size and growing complexity of micro-

electronic and micro-electro-mechanic systems(MEMS), the 
power dissipation of integrated circuits has become a critical 
concern. Thus, the thermal analysis of microelectronic devices 
has been the object of increasing interest for last several years. 
The problem of dissipating from digital to analog circuits and 
power devices [1]-[3]. Undesirable effects such as thermal 
runway, thermal coupling between neighboring devices, sub-
strate thinning, multilayer substrates, surface metallization, 
etc., unfavorably affecton the performance of semiconductor 
devices and circuits. Most published papers related to these 
problems assuming steady-state conditions [4]-[9], while rela-
tively few of them deal with the transient thermal modeling of 
microelectronicdevices [10], [11]. However, with growing a 
number of applications, the transient thermal behavior of in-
tegrated devices remains a critical issue. Since this phenome-
non strongly affects the maximum dissipated power it isvery 
important to determine the thermal constants that correspond 
to the temperature rise and hot spot formation under pulsed-
power conditions.  
   In order to characterize the dynamical thermal behavior, 
semiconductor manufactures usually provide transient ther-
mal impedance curve Zth(t) which shows the time dependence 
of the ratio of the peak temperature and dissipated powerfor a  
step application of constant power [12]. Often it is necessary 
to determinethe thermal behavior precisely in the microsecond 
time scale, which additionally complicates measurements. 
Either numerical [13], [14] or analytical [12], [15]-[17] ap-

proaches have been developed to solve this problem. In par 
ticular, modern trend of describing complete devices by mod-
els involving two or three spatial dimension provides that the 
consideration of the time dependenceof the transient thermal 
impedance is inevitable. Unfortunately, a limited amount of 
analytical expressions of the thermal time constants which 
incorporate the three-dimensional nature of the heat flow and 
the physical structure of the device exists [12]. 
    Different techniques that have been developed lead to a 
computationally intensive implementation but do not allow 
for a deeper physics insight [12]. There are two principle ap-
proaches to simulate electro-thermal behavior of integrated 
circuits – the direct method and the relaxation method [13]. 
The direct method is based on modelling the thermal and elec-
tronic behavior of the circuit for a single simulation tool [18]. 
The relaxation method is based on the coupling of a thermal 
and a circuit simulator [19], [20]. 
    Numerical methods, usually computationally very expen-
sive, do not lead to clear understanding of the transient ther-
mal response and do not allow for a simple derivation of the 
characteristic time constant. So, analytical solutions are need-
ed. Analytical studies of the transient thermal behavior usual-
ly include rough estimates of the characteristic time constants 
based on the so-called ”thermal capacitance” concept [15] and 
simplified solutions for the one-dimensional case [16,17]. One 
of these is method of images [22] which uses ”Green function” 
to represent the temperature distribution resulting from a 
point heat source. However, most analytical solutions are 
based on Fourier expansions  or Laplace transforms. Besides 
the fact that these Fourier solutions are limited by the number 
of layers, all analytical solutions are forced to assume a con-
stant heat conductivity which reduces the problem into solv-
ing the linear transient heat flow equation [14]. More accurate 
solutions obtained taking into account the tree-dimensional 
nature of the heat flow have been derived in the form of a 
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Fourier series [11] or a convolution integral, although these 
approaches do not provide a simple derivationof the charac-
teristic time constant.  
    In this paper, a simple analytical relation for the transient 
thermal impedance curve based on the Fourier series ap-
proachis derived. The proposed solution provides a good 
physical description of the phenomenon and is in very good 
agreement with the expression derived by coupling the elec-
trical model of a component with the description of its thermal 
properties using an electric analog model [17]. 

2 DESCRIPTION OF A MODEL 
It is well known that many properties of power semiconduc-
tors are strongly temperature-dependent. A maximum junc-
tion temperature is specified for all semiconductor compo-
nents, when exceed, can lead to destruction or permanent-
damage of the component. Even when temporary events such 
as avalanche or short-circuit conditions take place, it must be 
ensured that the maximum permissible junction temperature 
is not exceeded.Within the safe operating range, the life time 
of semiconductor components is strongly affected by tempera-
ture fluctuations due to loading. Each change in temperature 
causes mechanical stress in the component causes solder and-
bond connections. Here, it is not the absolute temperature 
which is decisive, but the temperature cycling. As a rule of 
thumb, it can be assumed that the aging of a component is 
proportional to the fourth power of the temperature deviation. 
In a MOSFET, increasing of temperature induces the drop of 
the breakdown voltage and consequently reduces the signal-
to-noise margin at the control mode. Increasing of the temper-
ature also provides increasing of the conduction losses. Ignor-
ing these effects can lead to un undesired- turn-on of the tran-
sistor when it should be inhibited. 
     In this paper we consider an improved version of the sim-
ple analytical on edimensional (1-D) model presented earlier 
[16], [17]. Geometry of the devices is shown in Figure 1. The 
heat source (shaded region) is located at the distance D be-
neath the top surface, at which the adiabatic condition is as-
sumed. At the bottom of the device (x = L) the heat convection 
condition is proposed. In general, the propagation of heat in a 
system can take place in three different ways, convection, heat 
radiation or heat conduction.  Bearing in mind that electronic 
components usually have only heat conduction, in our analy-
sis we start with one dimension heat transfer equation:  
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and an initial condition: 
( ) ,00, =Θ x   (4)                                                                                                                                                                      

where ρλα c/2 = is the thermal diffusivity, λ  is the ther-
mal conductivity of substrate, c is the specific heat, ρ is the 
density of the semiconductor material and x describes the co-
ordinates in the direction of heat propagation.  Pg(x,t) is the 
volume density of dissipated power and we shall assume in 
following that the thickness of dissipating region is negligible.  
 
This assumption is reasonable for MOSFET and MESFET de-
vices, but can questioned for bipolar transistors when volume 
heat source model is more appropriate. This assumption 
means that dependence of the function Pg(x,t)  on the spatial 
coordinate and on the time can be resolved separately,  or the 
function Pg(x,t)  can be expressed as: 

( ) ( ) ( )tfxPtxP gSg δ=, ,                                                            (5)  

where the function ( )tf  describes time dependence of the 
power dissipation. So, the problem we are solving is defined 
by eq. (1), boundary and initial conditions (2)-(4) and the as-
sumption (5).   
 

 
 

 

 

 

 

3 INTEGRAL TRANSFORMS 
The most general technique of solving inhomogeneous 
boundary problem   is to use methods of integral transforms. 
In the following we shall briefly discuss the possibilities of 
such approaches.should not be selected. 
3.1 Laplace transforms 
Applying Laplace transform to eq. (1) we obtain  an ordinary 
differential equation for space dependence of temperature 
function: 
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where )(sf


 is Laplace transform of  ( )tf . The solutuion of 
eq. (6) can be written in the form: 
 

 

Fig. 1. Schematic view of a structure with p-n junc-
tion in     the middle. 
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Complex constants C1and C2 can be determined from the boundary 
conditions (2): 
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3.2 Fourier transform 
Applying them on eq. (1), we get system of coupled equations: 
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where with subscripts S and C Fourier sine and cosine trans-
forms are denoted, respectively. The solution of this system 
are real functions given by relatively simple formulas: 
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Integration constants C1, C2, C3 and C4 are real numbers and 
can be determined from the conditions (2)-(4), but the result-
ing expressions are too complicated to be presented here. Un-
like of the case of the Laplace transform, inverse sine and co-
sine transforms are defined as real integrals on the positive 
part of the ω axes. The main problem in their numerical evalu-
ation is singular behaviour of the functions defined by (17) or 
(18) at ω = 0 point. 
 
3.3 Fourier series 
The Fourier series approach is probably the most common 
way of solving problems based on heat transfer equation [12]. 
In its original interpretation homogenous form of the equation 
is supposed. To deal with the heat source (the right side) of the 
equation (1) we assume that the time dependence of it is given 
by the Heaviside unit step function: f(t) = h(t) . In that case, the 
stationary solution of the boundary value problem (1)-(4) is 
given by the simple relation: 

( ) ( )[ ] .11,
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                                    (11)                                                      

With this, it is possible to write down solution of time de-

pendent case as a sum of two terms: 
 
( ) ( ) ( )∞Θ+Θ=Θ ,,, xtxtx h                                                  (12)                                                    

where ( )txh ,Θ  is the solution of homogenous problem with 
additional constraint  
 

( ) ( ),,0, ∞Θ−=Θ xxh                                                              (13)                                                          

originating from the initial condition ( ) 00, =Θ x . Homoge-

nous solution ( )txh ,Θ  can be expressed as well known infi-
nite series: 
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where constants An and Bnand eigenvalues nγ have to be de-
termined from boundary and initial conditions. From the 
boundary conditions the equation defining nγ  can be ob-
tained: 
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Constants An and Bn can be obtained from the boundary con-
ditions x = -D and initial condition (6): 
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Fanally, combining the expressions above we get the expres-
sion defining thermal impedance: 
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The expression (18) for the thermal impedance has a mathe-
matically simple  closed-form which is the same observed in 
[23] derived using the phenomenological model. Since the 
same forms of the expressions of the thermal impedance ob-
tained using two different approaches: Fourier series approach 
(this paper) and the phenomenological model [23] allow us to 
conclude that our simple analytical model provides a good 
physical description of the transient thermal behavior of semi-
conductor device.     

4 RESULTS 
Although the relation (18) has a simple form,  it could be 
greatly simplified when 0→D . Equation (18) then becomes 
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( ) λαγγ /=Ltg nn  and its smallest zero is simply ( )./2
0 Lλαγ ≈  

The same relation leads to approximate value of the coeffi-
cient ( ) ( )αλγγ /2

00
2 +≈ LDctg  also and retaining the first 

term in (18) only, we get the final straightforward expression 
for thermal impedance: 

( ) ,exp111
















−−






 +=

r
th

tL
S

tZ
τλα

.
α
ρτ cLr =                           (19)   

So that, we have shown that it is possible to describe the dy-
namic of the thermal response with one parameter only-rise 
time rτ . In the case when D cannot be neglected it would be 
difficult to derive similar relation, but one must remember 
that relation D<<L always holds.  The exponential time de-
pendence of the Zth is shown in Figure 2, while the  tempera-
ture profile is shown in Figure 3. 
 

 
Fig. 2. The time dependence of the termal impedance. 

 
 

 
 

Fig.3. Temperature profile. 
 

5 CONCLUSIONS 
In this paper we have described an improved version of a 
simple model of the transient thermal behavior of semicon-
ductor devices and described three promising methods of 
finding its analytical solution. Also, we have shown that it is 
possible to describe transient behavior of the thermal imped-

ance with the single parameter- rise time . Our analytical ex-
pression derived by using Fourier series approach has the 
same form as that obtained by using the phenomenological 
model, which confirms the accuracy of our procedure. Our 
derivation is most elegant and simple in comparison with very 
robust derivation described in [12], we may conclude that the 
method that we suggest represents a simple and very effective 
approach to the transient thermal behavior problem. Having 
in mind that the thermal behavior of practical solid state de-
vices may be strongly affected by complex effects such as sub-
strate thinning, multilayersubstrates, surface metallization, 
oxide isolation etc., these effects will be tasks of our future 
works. 
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